Mosquito control manages the population of mosquitoes to reduce their damage to human health, economies, and enjoyment. Mosquito control is a vital public-health practice throughout the world and especially in the tropics because mosquitoes spread many diseases, such as malaria.
Mosquito-control operations are targeted against three different problems:
Nuisance mosquitoes bother people around homes or in parks and recreational areas;
Economically important mosquitoes reduce real estate values, adversely affect tourism and related business interests, or negatively impact livestock or poultry production;
Public health is the focus when mosquitoes are vectors, or transmitters, of infectious disease.
Disease organisms transmitted by mosquitoes include West Nile virus, Saint Louis encephalitis virus, Eastern equine encephalomyelitis virus, Everglades virus, Highlands J virus, La Crosse Encephalitis virus in the United States; dengue fever, yellow fever, Ilheus virus, malaria, and filariasis in the American tropics; Rift Valley fever, Wuchereria bancrofti, Japanese Encephalitis, chikungunya, malaria and filariasis in Africa and Asia; and Murray Valley encephalitis in Australia.
Depending on the situation, source reduction, biocontrol, larviciding (killing of larvae), or adulticiding (killing of adults) may be used to manage mosquito populations. These techniques are accomplished using habitat modification, pesticide, biological-control agents, and trapping. The advantage of non-toxic methods of control is they can be used in Conservation Areas.
Monitoring mosquito populations[edit]
Adult mosquito populations may be monitored via landing rate counts, or by mechanical traps. For landing rate counts, an inspector visits a set number of sites every day, counting the number of adult female mosquitoes that land on a part of the body, such as an arm or both legs, within a given time interval. Mechanical traps use a fan to blow adult mosquitoes into a collection bag that is taken back to the laboratory for analysis of catch. The mechanical traps use visual cues (light, black/white contrasts) or chemical attractants that are normally given off by mosquito hosts (e.g. carbon dioxide, ammonia, lactic acid, octenol) to attract adult female mosquitoes. These cues are often used in combination.
Monitoring larval mosquito populations involves collecting larvae from standing water with a dipper or a turkey baster. The habitat, approximate total number of larvae and pupae, and species are noted for each collection. An alternative method works by providing artificial breeding spots (ovitraps) and collecting and counting the developing larvae at fixed intervals.
Source reduction[edit]
Since many mosquitoes breed in standing water, source reduction can be as simple as emptying water from containers around the home. This is something that homeowners can accomplish. For example, homeowners can eliminate mosquito breeding grounds by removing unused plastic pools, old tires, or buckets; by clearing clogged gutters and repairing leaks around faucets; by regularly (at least every 4 days) changing water in bird baths; and by filling or draining puddles, swampy areas, and tree stumps. Eliminating such mosquito breeding areas can be an extremely effective and permanent way to reduce mosquito populations without resorting to insecticides.[1] However, this may not be possible in parts of the developing world where water cannot be readily replaced due to irregular water supply.[citation needed]
Open water marsh management (OWMM) involves the use of shallow ditches, about 4 feet (1.2 m) wide and 2 feet (0.61 m) deep, to create a network of water flow within marshes and to connect the marsh to a pond or canal. The network of ditches drains the mosquito habitat and lets in fish which will feed on mosquito larvae. This reduces the need for other control methods such as pesticides. Simply giving the predators access to the mosquito larvae can result in long-term mosquito control.[2] Open-water marsh management is used on both the eastern and western coasts of the United States.
Rotational impoundment management (RIM) involves the use of large pumps and culverts with gates to control the water level within an impounded marsh. RIM allows mosquito control to occur while still permitting the marsh to function in a state as close to its natural condition as possible. Water is pumped into the marsh in the late spring and summer to prevent the female mosquito from laying her eggs on the soil. The marsh is allowed to drain in the fall, winter, and early spring. Gates in the culverts are used to permit fish, crustaceans, and other marsh organisms to enter and exit the marsh. RIM allows the mosquito-control goals to be met while at the same time reducing the need for pesticide use within the marsh. Rotational impoundment management is used to a great extent on the east coast of Florida.